Study of Electric Field Induced Second Harmonic (EFISH) Generation from Au and Ag implanted LiNbO$_3$ nano Composites

Chaudhary A.K. *1,2, Maaza M. 2, Fasasi A.Y. 2, Nandwandwe M. 2,3, Beye A.C. e2 and Neethling P. 4

1-Advanced Centre of Research in High Energy Materials, P-002, Science Complex, University of Hyderabad, Hyderabad-500046 (India)
2- Materials Research Group, iThemba Labs, Sommerset West, Cape –Town, South Africa
3- Department of Physics, Zululand University, South Africa
4- Department of Physics, Laser Research institute, University of Stellenbosch, Stellenbosch, Western Cape, South Africa

*E-mail : anilphys@yahoo.com

Abstract

Second Harmonic generation (SHG) using laser requires a non centro-symmetric materials or materials that lack inversion symmetry. However, symmetry breaking interface between metal –semiconductor can also permit third order process also known as EFISH .The paper reports the comparative study of EFISH generated from Au and Ag nano particles implanted on LiNbO$_3$ substrates using ion beam implantation technique . We have employed $\lambda= 782$ nm of Ti: Sapphire laser having repetition rate of 80 MHz pulse width of $85\pm5$ femto seconds with maximum pulse energy of the order of 10.5 nJ. The generated second harmonic signal is separated out from the fundamental using UV filter and detected with the help of PMT  coupled with Lock-in amplifier . We have also tested the polarization effect and observed the presence of dipole mode in case of Au implanted nano composites and quadrerpole mode in Ag implanted nano composites.

Keywords. SHG, Au and Ag nanoparticles, Lock-in-amplifier, plasmon

To read full text: Order now

Price:$25